
 

DOI: 10.14738/tmlai.54.3189  
Publication Date: 15th August, 2017 
URL: http://dx.doi.org/10.14738/tmlai.54.3189 

 

VOLUME 5 NO 4, 2017 

 

A	Model	Driven	Approach	for	Modeling	and	Generating	PHP	

CodeIgniter	based	Applications		

Karim Arrhioui, Samir Mbarki, Oualid Betari, Sarra Roubi, Mohammed Erramdani 
MISC Laboratory, Faculty of Sciences, IbnTofail University, Kenitra, Morocco 

MATSI Laboratory, Superior School of Technology, Mohammed First University, Oujda, Morocco 
arr.karim@gmail.com, mbarkisamir@hotmail.com, beta.oualid@gmail.com, roubi.sarra@gmail.com, 

m.erramdani@gmail.com  

ABSTRACT 

During the last decade, web development industry has grown exponentially. Models have been 

introduced as a solution to face the challenge of both business and technology changes. In this article, we 

present a Model Driven based approach concerning the design of CodeIgniter based web applications. We 

describe a meta model of this framework and we also specify a set of transformations to generate the 

application’s source code taking into account the MVC (ModelViewController) architecture of 

CodeIgniter. In this approach, the PHP framework meta model is considered as a platform Specific model 

(PSM). Its instances are used as inputs to generate the source code through transformation rules carried 

out by Acceleo. This proposal is validated through the use of our approach to generate CRUD (Create, 

Read, Update and Delete) applications. 

KeywordsCodeIgniter; Model Driven Architecture; ModelViewController; PHP; Platform Specific Model 

1 Introduction	

The express development of web based application has affected the coding methodology. This points 

toward a higher need of sustainability and maintainability. Besides, PHP is a web scripting language which 

is used in dynamic interactive web development. It is a generalpurpose and an open source tool that 

requires minimal setup [1]. Furthermore, PHP has become one of the most powerful programing 

languages for developing web applications. To deal with the problems caused by the increasing projects’ 

complexity, several techniques for programming in PHP such as Procedural PHP coding and Object 

Oriented Programming have been proposed. Resulting this rapid development, several frameworks such 

as CodeIgniter PHP framework have emerged to facilitate the development tasks. Indeed, as mentioned 

in [2],they have been improved and “become handy tools for developers to build complex applications 

efficiently”. 

In order to benefit from using these frameworks and also handle frequent changes, the Object 

Management Group (OMG) proposed the Model Driven Architecture as a solution. This approach supports 

changing business rules in different application domains by providing an open approach to manage the 

challenge of interoperability, by using OMG's established modeling standards that are: Unified Modeling 

Language (UML) and MetaObject Facility (MOF) [3] [4]. 



Karim Arrhioui, Samir Mbarki, Oualid Betari, Sarra Roubi, Mohammed Erramdani, A Model Driven Approach for 

Modeling and Generating PHP CodeIgniter based Applications. Transactions on Machine Learning and Artificial 

Intelligence, Vol 5 No 4 August (2017); p: 259-266 
 

URL:http://dx.doi.org/10.14738/tmlai.54.3189                                     260 
 

 

In this paper, we consider the union of the solutions offered by the introduction of the PHP frameworks 

and the use of MDE (Model Driven Engineering) in developing applications, as we will apply a Model 

Driven approach to model the CodeIgniter PHP framework and generate CRUD applications based on this 

framework. 

The present paper is structured as follows: In section 2 we outline the MDE principles. Section 3 presents 

the concepts of CodeIgniter and the MVC (ModelViewController) pattern. Section 4 introduces our MDA 

approach for generating CRUD applications. A case study is presented in Section 5. Finally, section 6 

concludes the work and offers further perspectives. 

2 Model	Driven	Architecture	

The OMG has introduced the Model Driven Architecture that is based on Modeling and transformation to 

generate the code and presented a formal statement with several tools and approaches [3]. This 

architecture focuses on creating models with a high level of abstraction, and promotes transforming the 

models according to given defined rules [5]. 

Today’s systems are constantly changing and highly networked. In order to face these challenges, MDA 

provides a platform independence architecture that assures portability and crossplatform 

Interoperability [3]. 

MDA consists of three general types of models, structured into three basic layers: Computation 

Independent Model (CIM), Platform Independent Model (PIM), and Platform Specific Model (PSM). The 

three models are defined as follow: 

• CIM: This model describes the system’s functionalities with a high level of abstraction. It is 

seen as a business model, as it uses a vocabulary that is familiar to the subject matter 

experts. It presents what the system is supposed to do, and hides structure details and 

implementation [6]. 

• PIM: This model defines the concept of the system without showing the specific details of 

a target platform. It exhibits a sufficient degree of independence so as to enable its 

mapping to one or more platforms. 

• PSM: It describes the deleted details and characteristics of PIM. It also provides platform 

specific details that should be considered to implement the system. 

The reason for the above model organization is to develop models of the systems’ business logic 

independently from the platforms of execution, then to transform these models automatically to models 

dependent of the platforms. The complexity of the platforms does no longer appear in the business logic 

models but it is found in the transformation [7].  

The Model Driven development using UML approach requires several steps: at first building the CIM that 

acquires user requirements. Then, according to this CIM, a PIM is built. Next, the proposed PIM is mapped 

into one or more PSMs. This type of transition from CIM to PIM and PIM to PSM is called Model To Model 

(M2M) transformation. Finally, the code of the target platform is generated from the PSM instance. This 

transition is called Model To Text (M2T) transformation [5] [7] [8]. Fig. 1 shows how the transformations 

are done [9]: 



Transact ions on Machine  Learn ing and  Art i f i c ia l  Inte l l igence Vol  5  No 4,  Aug 2017  
 

Copyright © Socie ty  for  Sc ience  and Educat ion Uni ted  Kingdom 261 
 

 

 

Figure 1. Model Driven Architecture Layers. 

 

Figure 2. Structure of CodeIgniter applications 

CodeIgniter is a PHP Application Development Framework based on a wellstructured architecture. It aims 

to provide necessary tools such as helpers and libraries to implement common tasks. Thus, project 

development becomes much easier and faster, and developers don’t have to write all the code from 

scratch [2] [10]. 

CodeIgniter is based on the MVC development approach, MVC is a design pattern that structures the 

software by separating application logic from presentation [11]. Indeed, PHP scripting related to business 

elements is separated from web pages [12].  

 The Model contains the business logic of the application. It gathers functions related to data 
accessing and thirdparty services. 

 The View is composed of user interface elements such as HTML, CSS and JavaScript files. In 
CodeIgniter, a view can be a web page, a fragment of a page, a RSS page... 

 The Controller connects views, models and any needed resources to process and respond to the 
user request. It is the point of entry that instantiates the required views and models [13]. 

3 Model	Driven	Approach	for	generating	CRUD	applications	

The development of web applications has been improved by the integration of frameworks, CodeIgniter 

being one of these frameworks allows the development of PHP web applications.Using CodeIgniter for 

the development of web applications, it is necessary to respect a precise structure as shown in Fig. 2: 

 



Karim Arrhioui, Samir Mbarki, Oualid Betari, Sarra Roubi, Mohammed Erramdani, A Model Driven Approach for 

Modeling and Generating PHP CodeIgniter based Applications. Transactions on Machine Learning and Artificial 

Intelligence, Vol 5 No 4 August (2017); p: 259-266 
 

URL:http://dx.doi.org/10.14738/tmlai.54.3189                                     262 
 

 

That's why when we initiated the development of a metamodel for this framework, it was necessary to 

study this structure and raise the level of abstraction. 

The proposed meta model in this paper is the PSM that describes the CodeIgniter PHP framework. This 

metamodel is used to define instances of models that describe web applications. These instances will be 

the inputs of the transformation engine that will be developed using Acceleo that respects an approach 

by template. The primary benefit of our approach is that the long task of coding a CRUD web application 

is done in a systematic, wellstructured and standard way by using MDA principles. 

3.1 The	proposed	CodeIgniter	meta	model	

The developed meta model of CodeIgniter framework, shown in Fig. 3, is represented by the model, view 

and controller packages. Each package contains specific meta classes according to the MVC pattern. 

 

Figure 3. CodeIgniter meta model. 

• CiPackage: expresses the concept of package that includes the entire elements of the 

model; the model, the controller and the view, that are themselves regrouped, 

respectively, in ModelPackage, ControllerPackage and ViewPackage. 

• A helper or a library is a set of functions that can be called from the controller, the view or 

the model. It is a PHP file that contains functions grouped by theme [12]. 

• View: contains the components of the View that will be defined bellow. 

• Controller: the intermediary between the model and the view. It contains all the functions 

to manage each user action [14]. 

• Component: it is a graphical element such as input, text area and heading. 

The View/Controller layers are responsible for describing the structure and content of views, while the 

navigation flow is ensured through the controller’s specific functions that are connected to the specified 

services from the model layer. This layer gathers all the business parts of the application. 



Transact ions on Machine  Learn ing and  Art i f i c ia l  Inte l l igence Vol  5  No 4,  Aug 2017  
 

Copyright © Socie ty  for  Sc ience  and Educat ion Uni ted  Kingdom 263 
 

 

3.2 The	Model	to	Text	transformation	rules	

Once the application has been sufficiently modelled, the code generation procedure follows the Model 

To Text transformation (M2T) to get, in our case, a CodeIgniter application’s source code using Acceleo 

[8]. This transformation follows the template approach; thus, we have developed the needed templates 

for code generation taking as an input a CodeIgniter meta model instance. The main module for code 

generation is shownbellow: 

[comment encoding = UTF-8 /] 

[modulegenerateCI('http://cimd/1.0')] 

[templatepublicgenerateElement(aCiPackage : CiPackage)] 

[comment@main/] 

 [for(model : Model|aCiPackage.mPack.model)] 

  [generateModels(model)/] 

 [/for] 

 [for(controller : Controller|aCiPackage.cPack.controller)]  

 [generateControllers(controller)/] 

 [/for]  

 [for(view : View|aCiPackage.vPack.views)] 

   [generateViews(view)/] 

 [/for] 

[/template] 

[templatepublicgenerateControllers(controller : Controller)] 

 [file ('/controllers/'+controller.name+'.php',false,'UTF-8')] 

<?php 

class[controller.name/] extends CI_Controller { 

  public function index() 

{   $data['['/]'title'[']'/] = "Add [controller.name/]"; 

            $data['['/]'heading'[']'/] = "-- Add [ 

 

controller.name/] --"; 

            $this->load->view('[controller.name/]_view', $data); 

   } 

  [for(fct : Function|controller.fctC)] 

   [generateFct(fct)/] 

  [/for] 

} 

?> 

 [/file] 

[/template] 



Karim Arrhioui, Samir Mbarki, Oualid Betari, Sarra Roubi, Mohammed Erramdani, A Model Driven Approach for 

Modeling and Generating PHP CodeIgniter based Applications. Transactions on Machine Learning and Artificial 

Intelligence, Vol 5 No 4 August (2017); p: 259-266 
 

URL:http://dx.doi.org/10.14738/tmlai.54.3189                                     264 
 

 

4 Case	Study	

CRUD operations are often the most commonly used in web applications. In addition, CodeIgniter offers 

the possibility to manage these operations through its predefined structure. So the approach we propose 

comes to simplify and further automate this process which converges towards these objectives and allows 

to generate these CRUD operations automatically in terms of source code. 

 

Figure 4. The input model of Customer CRUD operations 

 

Figure 5 

Once the application is modeled,using Acceleo, the code generation procedure follows the templates 

developed for the M2T engine. Fig. 5 below is an excerpt from the generated code: 

 



Transact ions on Machine  Learn ing and  Art i f i c ia l  Inte l l igence Vol  5  No 4,  Aug 2017  
 

Copyright © Socie ty  for  Sc ience  and Educat ion Uni ted  Kingdom 265 
 

 

To add a new customer, the user should provide a name, an address and an email then submit the form 

to the customer controller. Fig. 6 shows the generated views containing forms for adding both customer 

and product. Once the form is submitted, the specific controller calls a function in order to add the new 

element  

 

 Figure 7. Generated forms for adding customer and product 

To list all customers, the customer controller loads the customer model, calls “get_cutomers” function 

and then sends the result to the customerList view as show in Fig. 7: 

 

Figure 8. Customers list from the database 

5 Conclusion	and	Perspectives	

In this paper, we proposed an approach that allows modeling web applications based on the CodeIgniter 

PHP framework. In order to achieve this end, we applied the model driven approach principles to generate 

these applications. This approach using modeling and transformation process provides advantages in 

improving applications portability and quality, while minimizing cost and time. This approach has 

demonstrated its efficiency through enabling the building of a complete meta model that describes MVC 

CodeIgniter application, then, generating its source code. 

The form validation, using jQuery Validation Plugin and CodeIgniter form validation library, will be the 

subject of a study thereafter. Afterwards, we will consider applying this solution to other PHP frameworks 

in order to propose a comparative study. 

 



Karim Arrhioui, Samir Mbarki, Oualid Betari, Sarra Roubi, Mohammed Erramdani, A Model Driven Approach for 

Modeling and Generating PHP CodeIgniter based Applications. Transactions on Machine Learning and Artificial 

Intelligence, Vol 5 No 4 August (2017); p: 259-266 
 

URL:http://dx.doi.org/10.14738/tmlai.54.3189                                     266 
 

 

REFERENCES 

[1] S. Bergmann, and G. Kniesel, “GAP: generic aspects for PHP,” in Proc. EWAS’06, 2006. 

[2] O.Betari, M. Erramdani, S. Roubi, K. Arrhioui, and S. Mbarki, “Model transformations in the MOF meta

modeling architecture: from UML to codeIgniter PHP framework,” Europe and MENA Cooperation 

Advances in Information and Communication Technologies, vol. 520, pp. 227234, 2016. 

[3] Object Management Group (OMG), MDA Guide 2.0. http://www.omg.org/cgibin/doc?ormsc/1406

01 

[4] Executive Overview, Model Driven Architecturehttp://www.omg.org/mda/executive_overview.htm 

[5] S. Kherraf, É. Lefebvre, and W. Suryn, “Transformation from CIM to PIM using patterns and 

archetypes,” 19th Australian Conference on Software Engineering (aswec 2008), Perth, WA, pp. 338

346, 2008. 

[6] S. Roubi, M. Erramdani, and S. Mbarki, “Modeling and generating graphical user interface for MVC 

rich internet application using a model driven approach,” 2016 International Conference on 

Information Technology for Organizations Development (IT4OD), Fez, pp. 16, 2016. 

[7] X. Blanc, MDA en Action: Ingénierie Logicielle Guidée par les Modèles, Eyrolles, 2005. 

[8] S. Roubi, M. Erramdani, S. Mbarki, “Generating graphical user interfaces based on model driven 

engineering,”in International Review on Computers and Software (IRECOS), vol. 10, pp. 520528, 2015. 

[9] M. Brambilla, J. Cabot and M. Wimmer, ModelDriven Software Engineering in Practice, Morgan & 

Claypool, 2012. 

[10] E. Orr, and Y. Zadik, Programming with CodeIgniter MVC, Ed. Birmingham, UK: Packt Publishing, 2013. 

[11] R. Foster, CodeIgniter 2 Cookbook, Ed. Birmingham, UK: Packt Publishing, 2013. 

[12] CodeIgniter Documentation website. https://www.codeigniter.com/docs/ 

[13] C. Pitt, Pro PHP MVC, Apress, 2012. 

[14] M. Brambilla and A. Origgi, "MVCWebflow: an AJAX tool for online modeling of MVC2 web 

applications," 2008 Eighth International Conference on Web Engineering, pp. 344349, 2008. 

 

 


