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ABSTRACT  

The parameter identification method based on symbolic time series analysis (STSA) and 
adaptive immune clonal selection algorithm (AICSA) was experimentally verified using a 5-story 
experimental model structure. In the experimental verification, both single and multiple 
damage scenarios were studied. A 5-story structure was initially healthy with all original 
columns intact. The single-damage case, the double-damage or the triple-damage case was 
simulated by replacing the columns of one, two or three different floors, respectively. The 
experimental results have shown that the parameter identification method based on STSA and 
AICSA can successfully identify structure parameters only utilizing measured acceleration 
information for various damage scenarios under different excitation conditions. The proposed 
approach was shown promising for application of SHM on buildings. 

Keywords: structural health monitoring; clonal selection algorithm; symbolic time series 
analysis; adaptive immune; building structures; 

1 INTRODUCTION 
A new parameter identification method based on symbolic time series analysis (STSA) and 
adaptive immune clonal selection algorithm (AICSA) was proposed in reference [1]~[4]. To 
better assess the performance of the proposed methodology, experimental validation of the 
proposed approach has been conducted. Following the detailed description of the experimental 
setups, experimental results are provided which show the proposed approach to be very 
promising. A 5-story structure was initially healthy with all original columns intact. Two columns 
of one floor were then replaced by weak columns (of the same material and integrity as healthy 
columns, but with smaller cross-sectional area) to simulate a single-damage case. The double-
damage or triple-damage case was simulated by replacing the columns of two or three different 
stories, respectively. Under the basement of the structure, there were some bearings so that 
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the structure could have a ground motion. The experimental results have shown that the 
proposed approach can successfully identify parameters of structure utilizing measured 
acceleration information for various damage scenarios under different excitation conditions. 
The proposed approach was shown promising for application of SHM on buildings. 

2 PROPOSED METHOD 
2.1 Procedure 
In the research field of structural parameter identification, the time response of the system is 
usually compared with that of a parameterized model using a norm or some performance 
criterion to give us a measure of how well the model explains the system.  

We will explain our methodology using a physical system with input 𝑢  and output  𝑦 . 
Let 𝑦(𝑡𝑖) (𝑖 = 1, … ,𝑇) denote the value of the actual system at the 𝑖th discrete time step. 
Suppose that a parameterized model able to capture the behavior of the physical system is 
developed and this model depends on a set of 𝑛 parameters, i.e., 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 ∈ 𝑅𝑛. 
Given a candidate parameter value 𝑥 and a guess 𝑋�0 of the initial state, 𝑦�(𝑡𝑖) (𝑖 = 1, … ,𝑇) , the 
value of the parameterized model, i.e., the identified system at the ith discrete time step, can 
be obtained. Hence, the problem of system identification boils down to finding a set of 
parameters that minimize the prediction error between the system output 𝑦(𝑡𝑖), which is the 
measured data, and the model output 𝑦�(𝑥, 𝑡𝑖), which is calculated at each time instant  𝑡𝑖 . 

Usually, our interest lies in minimizing the predefined error norm of the time series outputs, 
e.g., the following mean square error (MSE) function, 

                              𝑓(𝑥) = 1
𝑇
∑ ‖𝑦(𝑡𝑖) − 𝑦�(𝑥, 𝑡𝑖)‖2𝑇
𝑖=1                     (1) 

where ∥·∥ represents the Euclidean norm of vectors. Formally, the optimization problem 
requires one to find a set of 𝑛 parameters 𝑥∗ ∈ 𝑅𝑛 so that a certain quality criterion is satisfied, 
namely, that the error norm 𝑓(•) is minimized. The function 𝑓(•) is called a fitness function or 
objective function. Typically, an objective function that reflects the goodness of the solution is 
chosen. 
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Figure 1. Procedure of AICSA combining STSA for identification of structural parameters. 

In our methodology, we introduce an index, the relative state sequence histogram error 
(RSSHe), to measure the distance between 𝑆𝑆𝐻𝑎 and 𝑆𝑆𝐻𝑏 (𝑆𝑆𝐻𝑎 and 𝑆𝑆𝐻𝑏 are the system 
output and model output, respectively). The definition is: 

         �
𝑆𝑆𝐻𝑎 = �𝑑𝑎0,𝑑𝑎1 , … ,𝑑𝑎

𝑄−1�
𝑆𝑆𝐻𝑏 = �𝑑𝑏0,𝑑𝑏1 , … ,𝑑𝑏

𝑄−1�
,     𝑄 = 2𝑟    and   𝑅𝑆𝑆𝐻𝑒 = �

∑ (𝑑𝑏
𝑖 −𝑑𝑎𝑖 )2𝑖=𝑄−1

𝑖=0
∑ (𝑑𝑎𝑖 )2𝑖=𝑄−1
𝑖=0

        (2) 

where 𝑑𝑎/𝑏
𝑖  is the frequency of state 𝑖 in 𝑆𝑆𝐻𝑎 or 𝑆𝑆𝐻𝑏. The procedure of AICSA combining 

STSA for identification of structural parameters was shown in Figure 1. 

2.2 Guideline for parameter selection 
In STSA, the main parameters are the word length and window length, and they control the 
resolution of the whole representation space. For a window length 𝑇 and word length 𝑟, two 
limiting cases of 𝑆𝑆𝐻 are predefined as:  

• Case 1: All states in the 𝑆𝑆𝐻 are distributed uniformly, and the frequency of each state 

is 1
2𝑟

.  

• Case 2: Only one state in the 𝑆𝑆𝐻 has the frequency of 1; the frequencies of the other 
states are 0. 

Suppose there are two different 𝑆𝑆𝐻𝑠 :  𝑆𝑆𝐻𝑎  and 𝑆𝑆𝐻𝑏 . From Equation (3), when 𝑆𝑆𝐻𝑎 
corresponds to limiting case 1 and  𝑆𝑆𝐻𝑏 to limiting case 2, the maximum value of 𝑅𝑆𝑆𝐻𝑒 is: 

                𝑅𝑆𝑆𝐻𝑒𝑚𝑎𝑥 = �∑ �𝑑𝑏
𝑖 −𝑑𝑎𝑖 �

2𝑖=𝑄−1
𝑖=0

∑ �𝑑𝑎𝑖 �
2𝑖=𝑄−1

𝑖=0

= �(1− 1
2𝑟)2+� 12𝑟�

2
(2𝑟−1)

( 12𝑟)2∗2𝑟
= √2𝑟 − 1           (3) 

When  𝑆𝑆𝐻𝑎 and  𝑆𝑆𝐻𝑏 are the same, the minimum 𝑅𝑆𝑆𝐻𝑒 is 0. Then, 

 𝑅𝑆𝑆𝐻𝑒 ∈ [𝑅𝑆𝑆𝐻𝑒𝑚𝑖𝑛,𝑅𝑆𝑆𝐻𝑒𝑚𝑎𝑥] = [0,√2𝑟 − 1]                (4) 
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Since the minimum changeable unit in 𝑆𝑆𝐻 is 1
𝑇−𝑟+1

, the change in frequency of one state in 

𝑆𝑆𝐻 will absolutely be related to the change in frequencies of other states. Supposing that 
there are only two minimum unit differences between  𝑆𝑆𝐻𝑎  and  𝑆𝑆𝐻𝑏 , the minimum 
distinguishable 𝑅𝑆𝑆𝐻𝑒 is:  

                𝑅𝑆𝑆𝐻𝑒𝑑𝑖𝑠 = �
∑ (𝑑𝑏

𝑖 −𝑑𝑎𝑖 )2𝑖=𝑄−1
𝑖=0
∑ (𝑑𝑎𝑖 )2𝑖=𝑄−1
𝑖=0

= �
( 1
𝑇−𝑟+1)2+( 1

𝑇−𝑟+1)2

∑ (𝑑𝑎𝑖 )2𝑖=𝑄−1
𝑖=0

=
�

2

∑ (𝑑𝑎𝑖 )2𝑖=𝑄−1
𝑖=0

 

𝑇−𝑟+1
            (5) 

When  𝑆𝑆𝐻𝑎 is limiting case 1, the maximum distinguishable 𝑅𝑆𝑆𝐻𝑒𝑑𝑖𝑠𝑚𝑎𝑥 will be: 

                                𝑅𝑆𝑆𝐻𝑒𝑑𝑖𝑠𝑚𝑎𝑥 =
�2(𝑟+1)

𝑇−𝑟+1
                                (6) 

When  𝑆𝑆𝐻𝑎 is limiting case 2, the minimum distinguishable 𝑅𝑆𝑆𝐻𝑒𝑑𝑖𝑠𝑚𝑖𝑛 will be: 

                                 𝑅𝑆𝑆𝐻𝑒𝑑𝑖𝑠𝑚𝑖𝑛 = √2
𝑇−𝑟+1

                                 (7) 

    The resolution is: 

                       [𝑅𝑆𝑆𝐻𝑒𝑑𝑖𝑠𝑚𝑖𝑛,𝑅𝑆𝑆𝐻𝑒𝑑𝑖𝑠𝑚𝑎𝑥] = [ √2
𝑇−𝑟+1

,
�2(𝑟+1)

𝑇−𝑟+1
]                     (8)  

Note that we also need to consider the number of the possible distributions of states in one 

𝑆𝑆𝐻. If the number of states in 𝑆𝑆𝐻 is 2𝑟 and the minimum changeable unit is 1
𝑇−𝑟+1

, finding 

the total number of possible distributions 𝑁𝑆𝑆𝐻 of 𝑆𝑆𝐻 boils down to a classic combination 
problem, which is 'put 𝑇 − 𝑟 + 1 identical balls in 2𝑟 different boxes. The combinatorial number 
is:  

                              𝑁𝑆𝑆𝐻 = 𝐶𝑇−𝑟+2𝑟
2𝑟−1                                      (9) 

As we can see, longer window and word lengths are related to higher resolution, which means 
that the self and non-self-spaces can be separated much more accurately. This is the key to 
obtaining accurate structural parameter identification. 

So far, our discussion of the effect of the window length and word length has been based on a 
case in which only one story's output (raw acceleration data) is used, but structures with 
multiple degrees of freedom (MDOF) may have more outputs than that. Supposing the outputs 
from 𝑁 stories can be obtained, the boundary of the solution space is: 

                   𝑅𝑆𝑆𝐻𝑒 ∈ [𝑅𝑆𝑆𝐻𝑒𝑚𝑖𝑛,𝑅𝑆𝑆𝐻𝑒𝑚𝑎𝑥]𝑁 = [0,√2𝑟 − 1]𝑁               (10) 

The resolution falls to: 

  [𝑅𝑆𝑆𝐻𝑒𝑑𝑖𝑠𝑚𝑖𝑛,𝑅𝑆𝑆𝐻𝑒𝑑𝑖𝑠𝑚𝑎𝑥]𝑁 = [ √2
𝑇−𝑟+1

,
�2(𝑟+1)

𝑇−𝑟+1
]𝑁                   (11) 
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Also, the total number of possible distributions increases to: 

    [𝑁𝑆𝑆𝐻]𝑁 = [𝐶𝑇−𝑟+2𝑟
2𝑟−1 ]𝑁                              (12) 

From Equations (10) to (12), it is evident that as more story outputs are obtained, the more 
accurate the identification results will be. 

The root-mean-square error (RMSe) was used to verify the feasibility and performance of the 
identification results. RMSe is defined as 

𝑅𝑀𝑆𝑒 = �
∑ (𝑘𝑐,𝑖−𝑘𝑟𝑒𝑎𝑙,𝑖)2𝑛
𝑖=1
∑ 𝑘𝑟𝑒𝑎𝑙,𝑖

2𝑛
𝑖=1

                              (13) 

where 𝑘𝑐,𝑖 and 𝑘𝑟𝑒𝑎𝑙,𝑖 are the candidate stiffness and real stiffness of the 𝑖th story, respectively. 

3 EXPERIMENTAL SETUP 
A series of experiments were performed to verify the performance of our proposed approach. 
The model structure is depicted in Figure 2.  

 

 

 Figure 2. Experimental setup of small model 

This experimental setup imitates a 5-story shear frame buildings. The story mass is decided by 
the aluminum floor slab which is 2.43 kg for each floor. The story stiffness is decided by the 
bronze plate spring with the size of 0.0025m×0.030m×0.24 m. The Young’s modulus of bronze 
is 1.00×1011 N/m2, so the interfloor stiffness is 1.36×104 N/m. The structure was initially healthy 
with all original columns intact, and the natural frequency of the first to the fifth mode is 
3.39Hz ,9.89Hz, 15.59Hz, 20.03 Hz and 22.84 Hz, respectively. 
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The damage was introduced by replacing columns by weak columns with the size of 
0.0030m×0.0060m×0.24 m, shown in Figure 3. By replacing two columns in a story, the story 
stiffness was reduced by 33%.  

 

Figure 3. Healthy (Left) and Damaged (Right) Columns 

Under the basement of the structure, there were some bearings so that the structure could 
have a ground motion. The force input to the structure is provided with an electrodynamic 
shaker as shown in Figure 4. One acceleration sensor was installed on the basement to measure 
the ground motion. The sensor installed on each floor plate was used to measure the 
acceleration response of each floor. 

 

Figure 4. Bearings and Shaker 

4 PROCEDURE 
The 5-story structure was initially healthy with all original columns intact. The force input to the 
structure was provided by the shaker to obtain the acceleration data of the 5th story of the 
structure in normal state. Then, two columns of the first story were then replaced by weaker 
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columns (of the same material and integrity as healthy columns but with a smaller cross-
sectional area) to simulate the abnormal state of the structure as stiffness reduction at a single 
story. The abnormal state of stiffness reduction at two stories was simulated by replacing two 
columns of the 1st story as well as those of the 3rd story. Finally, two columns of the 5th floor 
were also replaced to simulate the abnormal state case of stiffness reduction at three stories. 

For only small completely vibration of the experimental setup is needed, and also considering 
avoiding the resonance region, a 1.1-Hz sine wave was used as the input signal in the 
experiments. Part of the input signal (0 to 20 s) is shown in Figure 5. The response of the 
experiential structure was recorded for 30s at a sampling frequency of 100 Hz; the total data 
length was 3000.  

 

Figure 5. One typical acceleration signal 

 

5 DAMAGE IDENTIFICATION RESULTS 
The results summarized in Tables 1~4 show that RMSe is acceptable with our proposed method. 
In the verification, every case is calculated 10 times independently and average RMSe can be 
obtained. The average RMSe for each case is 3.64%, 3.63%, 3.82%and 3.88%, respectively. The 
trend is same as that of numerical simulation.  
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Table 1. Results of experimental verification of original structure. (Unit is 10 kN/m) 

 
True stiffness  

Process number 

 1 2 3 4 5 6 7 8 9 10 

k1 1.36 1.34  1.36  1.38  1.40  1.39  1.35  1.35  1.34  1.33  1.33  

k2 1.36 1.37  1.40  1.34  1.36  1.34  1.34  1.39  1.38  1.32  1.37  

k3 1.36 1.37  1.35  1.36  1.33  1.39  1.34  1.37  1.38  1.36  1.36  

k4 1.36 1.33  1.37  1.38  1.33  1.34  1.37  1.36  1.35  1.38  1.32  

k5 1.36 1.33  1.34  1.39  1.34  1.40  1.36  1.39  1.37  1.40  1.35  

RMSe (%) 0.00 3.63  3.40  3.37  4.35  4.35  2.62  3.37  2.65  4.82  3.83  

 

 

Table 2. Results of experimental verification of single-damage case. (Unit is 10 kN/m) 

 
True stiffness  

Process number 

 1 2 3 4 5 6 7 8 9 10 

k1 0.91  0.92  0.90  0.92  0.92  0.90  0.89  0.90  0.90  0.91  0.91  

k2 1.36  1.35  1.35  1.38  1.36  1.35  1.39  1.35  1.34  1.39  1.36  

k3 1.36  1.38  1.37  1.36  1.36  1.38  1.36  1.36  1.34  1.36  1.33  

k4 1.36  1.34  1.38  1.36  1.38  1.36  1.37  1.34  1.34  1.34  1.34  

k5 1.36  1.37  1.33  1.36  1.38  1.35  1.37  1.38  1.36  1.39  1.35  

RMSe (%) 0.00  3.63  4.17  2.21  3.40  3.08  3.60  3.73  3.92  5.01  3.52  

    

 

 Table 3. Results of experimental verification of double-damage case. (Unit is 10 kN/m) 

 
True stiffness 

Process number 

 1 2 3 4 5 6 7 8 9 10 

k1 0.91  0.91  0.93  0.92  0.89  0.89  0.91  0.92  0.93  0.93  0.90  

k2 1.36  1.33  1.35  1.34  1.34  1.35  1.35  1.36  1.38  1.39  1.38  

k3 0.91  0.91  0.90  0.90  0.90  0.92  0.91  0.90  0.91  0.90  0.89  

k4 1.36  1.36  1.38  1.34  1.37  1.37  1.34  1.35  1.35  1.37  1.38  

k5 1.36  1.38  1.36  1.33  1.35  1.36  1.34  1.38  1.34  1.36  1.39  

RMSe (%) 0.00  4.07  3.45  4.92  3.63  2.62  3.16  2.96  3.80  4.25  5.39  
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Table 4. Results of experimental verification of triple-damage case. (Unit is 10 kN/m) 

 
True stiffness 

Process number 
 1 2 3 4 5 6 7 8 9 10 
k1 0.91  0.92  0.91  0.93  0.90  0.90  0.89  0.94  0.92  0.91  0.92  
k2 1.36  1.33  1.35  1.38  1.34  1.38  1.37  1.37  1.34  1.37  1.38  
k3 0.91  0.91  0.92  0.91  0.92  0.91  0.93  0.90  0.90  0.90  0.90  
k4 1.36  1.35  1.36  1.34  1.34  1.35  1.35  1.39  1.37  1.35  1.34  
k5 0.91  0.90  0.91  0.90  0.93  0.92  0.93  0.94  0.95  0.89  0.88  
RMSe (%) 0.00  3.88  1.54  3.95  4.02  2.95  4.00  5.75  4.70  3.35  4.68  

6     CONCLUSION 
In this paper, the parameter identification method based on STSA and AICSA was 
experimentally verified using a 5-story experimental model. The 5-story structure was initially 
healthy with all original columns intact. Two columns of one floor were then replaced by weak 
columns to simulate a single-damage case. The double-damage or triple-damage case was 
simulated by replacing the columns of two or three different floors, respectively. Under the 
basement of the structure, there were some bearings so that the structure could have a ground 
motion. The experimental results have shown that the proposed approach can successfully 
identify parameters of structure utilizing measured acceleration information for various 
damage scenarios under different excitation conditions. The proposed approach was shown 
promising for application of SHM on buildings. 
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